Morrey smoothness spaces: A new approach

Dorothee D. Haroske¹

¹Institute of Mathematics, Friedrich Schiller University Jena

Abstract

In the recent years so-called Morrey smoothness spaces attracted a lot of interest. They can (also) be understood as generalisations of the classical spaces $A_{p,q}^s(\mathbb{R}^n)$, $A \in \{B, F\}$, where the parameters satisfy $s \in \mathbb{R}$ (smoothness), $0 (integrability) and <math>0 < q \leq \infty$ (summability). In the case of Morrey smoothness spaces additional parameters are involved. In our opinion, among the various approaches at least two scales enjoy special attention, also in view of applications: the scales $\mathcal{A}_{u,p,q}^s(\mathbb{R}^n)$, with $\mathcal{A} \in \{\mathcal{N}, \mathcal{E}\}$, $u \geq p$, and $\mathcal{A}_{p,q}^{s,\tau}(\mathbb{R}^n)$, with $\tau \geq 0$.

We reorganise these two prominent types of Morrey smoothness spaces by adding to (s, p, q) the so-called slope parameter ϱ , preferably (but not exclusively) with $-n \leq \varrho < 0$. It comes out that $|\varrho|$ replaces n, and $\min(|\varrho|, 1)$ replaces 1 in slopes of (broken) lines in the $(\frac{1}{p}, s)$ -diagram characterising distinguished properties of the spaces $A_{p,q}^s(\mathbb{R}^n)$ and their Morrey counterparts.

Our aim is two-fold. On the one hand we reformulate some assertions already available in the literature (many of them are quite recent). On the other hand we establish on this basis new properties, a few of them became visible only in the context of the offered new approach, governed, now, by the four parameters (s, p, q, ϱ) .

The talk is based on joint work with Hans Triebel (Jena).